Monotone Jacobi parameters and non-Szegö weights

نویسندگان

  • Yury Kreimer
  • Yoram Last
  • Barry Simon
چکیده

We relate asymptotics of Jacobi parameters to asymptotics of the spectral weights near the edges. Typical of our results is that for an ≡ 1, bn = −Cn−β (0 < β < 2 3 ), one has dμ(x) = w(x) dx on (−2, 2), and near x = 2, w(x) = e where Q(x) = βC 1 β Γ(32 )Γ( 1 β − 1 2 )(2 − x) 1 2 − 1 β Γ( 1 β + 1) (1 +O((2 − x)))

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Szegö quadrature formulas for certain Jacobi-type weight functions

In this paper we are concerned with the estimation of integrals on the unit circle of the form ∫ 2π 0 f(eiθ)ω(θ)dθ by means of the so-called Szegö quadrature formulas, i.e., formulas of the type ∑n j=1 λjf(xj) with distinct nodes on the unit circle, exactly integrating Laurent polynomials in subspaces of dimension as high as possible. When considering certain weight functions ω(θ) related to th...

متن کامل

From random matrices to quasi-periodic Jacobi matrices via orthogonal polynomials

We present an informal review of results on asymptotics of orthogonal polynomials, stressing their spectral aspects and similarity in two cases considered. They are polynomials orthonormal on a finite union of disjoint intervals with respect to the Szegö weight and polynomials orthonormal on R with respect to varying weights and having the same union of intervals as the set of oscillations of a...

متن کامل

Convergence of a non-monotone scheme for Hamilton-Jacobi-Bellman equations with discontinuous data

We prove the convergence of a non-monotonous scheme for a one-dimensional first order Hamilton-Jacobi-Bellman equation of the form vt+maxα(f(x, α)vx) = 0, v(0, x) = v0(x). The scheme is related to the HJB-UltraBee scheme suggested in [7]. We show for general discontinuous initial data a first-order convergence of the scheme, in L-norm, towards the viscosity solution. We also illustrate the non-...

متن کامل

Constrained Approximation with Jacobi Weights

In this paper, we prove that for l = 1 or 2 the rate of best l-monotone polynomial approximation in the Lp norm (1 ≤ p ≤ ∞) weighted by the Jacobi weight wα ,β(x) ∶= (1 + x)α(1 − x)β with α, β > −1/p if p <∞, or α, β ≥ 0 if p =∞, is bounded by an appropriate (l + 1)-st modulus of smoothness with the same weight, and that this rate cannot be bounded by the (l+2)-ndmodulus. Related results on con...

متن کامل

Convergence of approximated gradient method for Elman network ?

An approximated gradient method for training Elman networks is considered. For finite sample set, the error function is proved to be monotone in the training process, and the approximated gradient of the error function tends to zero if the weights sequence is bounded. Furthermore, after adding a moderate condition, the weights sequence itself is also proved to be convergent. A numerical example...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2009